深度-分辨率雙突破:顛覆性解決活體成像領域"看得清則看不深"的百年難題?;诼暪夤步固綔y技術,橫向分辨率達3μm(相當于紅細胞直徑),軸向分辨率75μm,同時穿透深度突破至6mm(超越傳統(tǒng)光學成像60倍)。此性能使系統(tǒng)能清晰呈現(xiàn)小鼠全腦微血管網、深部滋養(yǎng)血管、肝腎內部血竇等傳統(tǒng)技術無法觸及的結構,為深部組織研究打開新視窗。無創(chuàng)動態(tài)監(jiān)測范式:無需切片或造影劑,涂抹水基耦合劑即可實現(xiàn)活體無損成像。一體化動物固定臺維持生命體征穩(wěn)定,支持同一動物長期重復觀察。在腦科學研究中,成功實現(xiàn)連續(xù)28天追蹤腦膜淋巴管動態(tài)(Light Sci Appl 2024);在領域,可全程監(jiān)測PDT醫(yī)治中血管消融過程(J. Biophotonics 2020)。此特性明顯提升實驗數(shù)據(jù)的連續(xù)性及倫理合規(guī)性。??教學應用創(chuàng)新??,活體解剖學微血管網實時演示??啥ㄖ撇ㄩL高分辨光聲多模態(tài)小動物活體成像系統(tǒng)實驗室方案
產學研醫(yī)閉環(huán):生態(tài)與50+前列機構共建研發(fā)網絡:·腦科學:海南大學阿爾茨海默病淋巴研究·腫瘤學:中山三院消化道早癌診斷·材料學:華南師大NIR-II探針驗證·臨床轉化:廣東省人民醫(yī)院燒傷評估合作成果覆蓋等前列期刊,推動技術持續(xù)迭代。腦血管研究變革性工具:以3μm分辨率無創(chuàng)解析全腦血管網絡:·結構監(jiān)測:皮層/腦血竇/三維重建·動態(tài)追蹤:捕捉"缺血-再灌注"全程·代謝量化:多波長計算腦區(qū)血氧飽和度·創(chuàng)新發(fā)現(xiàn):活體可視化腦膜淋巴管配套軟件自動生成多項血管參數(shù)(密度/直徑/分支角),成為阿爾茨海默病、中風研究優(yōu)先平臺(海南大學合作數(shù)據(jù))。可定制波長高分辨光聲多模態(tài)小動物活體成像系統(tǒng)實驗室方案??肝膽代謝定量模型??,ICG清除率動態(tài)評估肝小葉功能異常。
多模態(tài)融合:光學對比度與超聲穿透力的完美結合:本系統(tǒng)的關鍵優(yōu)勢在于其創(chuàng)新的多模態(tài)融合設計。光聲成像利用特定波長納秒脈沖激光激發(fā)組織內光吸收物質(如血紅蛋白、黑色素、外源性探針),通過接收其產生的超聲波實現(xiàn)成像,兼具光學對比度高、可識別特定分子的優(yōu)勢。超聲成像則提供組織解剖結構和聲阻抗信息。兩者結合,成功突破了成像深度與分辨率的傳統(tǒng)限制,實現(xiàn)對6mm內組織的微米級(3μm)高分辨成像,為微觀世界打開新視窗。
系統(tǒng)采用1064nm雙波長激發(fā)技術,實現(xiàn)對肝臟微循環(huán)與代謝功能的無創(chuàng)動態(tài)監(jiān)測。通過吲哚菁綠(ICG)動力學模型精細量化肝小葉滲透性(誤差±5%),同步追蹤膽汁酸72小時代謝循環(huán)。在南方醫(yī)科大學合作研究中(Photoacoustics 2022),系統(tǒng)捕獲酪氨酸血癥模型小鼠的肝代謝異常:肝血竇擴張37%,血流速度下降29%,代謝延遲達42分鐘。該技術突破傳統(tǒng)活檢局限,生成三維代謝熱力圖,為脂肪肝、肝纖維化研究提供全新量化工具,單次掃描可獲取16項代謝參數(shù)。??移植排斥監(jiān)測??,血管新生信號早于臨床癥候周。
廣州光影細胞科技有限公司的高分辨光聲多模態(tài)小動物活體成像系統(tǒng),可應用于光影細胞創(chuàng)新性地推出多模態(tài)微導管內窺系統(tǒng)(GPA-US-10,GOCT-US-10),解決了傳統(tǒng)光學內鏡(白光/窄帶)能觀察粘膜表層病變、無法探查深層結構病變的缺陷。該系統(tǒng)將光聲(PA)、超聲(US)和/或光學相干層析(OCT)成像集成于微型導管(直徑1.0/2.5mm),穿透生物管壁全層,分辨率較傳統(tǒng)超聲內鏡提高約20倍,實現(xiàn)“結構+功能”成像,可同時檢查粘膜病變和深層結構病變。??國產成本降低??,國產自研打破美國技術壟斷。可定制波長高分辨光聲多模態(tài)小動物活體成像系統(tǒng)實驗室方案
??納米金顆粒代謝??,腎小球濾過率量化??啥ㄖ撇ㄩL高分辨光聲多模態(tài)小動物活體成像系統(tǒng)實驗室方案
廣州光影細胞科技有限公司的高分辨光聲多模態(tài)小動物活體成像系統(tǒng),可應用于肝臟血竇高清成像:代謝與毒性評估。系統(tǒng)能夠對肝臟微循環(huán),特別是肝血竇進行高清成像。結合功能成像,可評估肝臟的血流灌注、氧合狀態(tài)等。Huang等(Photoacoustics2022)利用該系統(tǒng)實現(xiàn)了酪氨酸血癥模型小鼠肝臟病變的無創(chuàng)光聲評估,展示了其在研究代謝性疾病、藥物肝毒性、肝纖維化/肝硬化等過程中肝臟微循環(huán)改變方面的應用潛力。系統(tǒng)同樣適用于腎臟研究,可清晰呈現(xiàn)腎小球、腎小管周圍血管等腎微血管結構。通過無創(chuàng)監(jiān)測腎臟不同區(qū)域的血流和血氧變化,有助于研究急慢性腎?。ㄈ缂毙阅I損傷、糖尿病腎?。?、腎損害等疾病的發(fā)生的發(fā)展機制,以及評估腎臟保護策略的效果(Huang, Photoacoustics 2022提及肝腎病理評估)??啥ㄖ撇ㄩL高分辨光聲多模態(tài)小動物活體成像系統(tǒng)實驗室方案