半導體材料分為直接帶隙半導體和間接帶隙半導體,而Si是典型的直接帶隙半導體,其禁帶寬度為1.12eV。所以當電子與空穴復合時,電子會彈射出一個光子,該光子的能量為1.12eV,根據波粒二象性原理,該光子的波長為1100nm,屬于紅外光區(qū)。通俗的講就是當載流子進行復合的時候就會產生1100nm的紅外光。這也就是產生亮點的原因之一:載流子復合。所以正偏二極管的PN結處能看到亮點。如果MOS管產生latch-up現象,(體寄生三極管導通)也會觀察到在襯底處產生熒光亮點。國外微光顯微鏡價格高昂,常達上千萬元,我司國產設備工藝完備,技術成熟,平替性價比高。半導體失效分析微光顯微鏡成像
致晟光電作為蘇州本土的光電檢測設備研發(fā)制造企業(yè),其本地化服務目前以國內市場為主要覆蓋區(qū)域 。尤其在華東地區(qū),依托總部蘇州的地理優(yōu)勢,對上海、江蘇、浙江等周邊省市實現高效服務。無論是設備的安裝調試,還是售后的故障維修、技術咨詢,都能在短時間內響應,例如在蘇州本地,接到客戶需求后,普遍可在數小時內安排技術人員上門服務。在全國范圍內,致晟光電已通過建立銷售服務網點、與當地經銷商合作等方式,保障本地化服務的覆蓋。
半導體失效分析微光顯微鏡應用與原子力顯微鏡聯用時,微光顯微鏡可同步獲取樣品的表面形貌和發(fā)光信息,便于關聯材料的結構與電氣缺陷。
企業(yè)用戶何如去采購適合自己的設備?
功能側重的差異,讓它們在芯片檢測中各司其職。微光顯微鏡的 “專長” 是識別電致發(fā)光缺陷,對于邏輯芯片、存儲芯片等高密度集成電路中常見的 PN 結漏電、柵氧擊穿、互連缺陷等細微電性能問題,它能提供的位置信息,是芯片失效分析中定位 “電故障” 的工具。
例如,在 7nm 以下先進制程芯片的檢測中,其高靈敏度可捕捉到單個晶體管異常產生的微弱信號,為工藝優(yōu)化提供關鍵依據。
熱紅外顯微鏡則更關注 “熱失控” 風險,在功率半導體、IGBT 等大功率器件的檢測中表現突出。這類芯片工作時功耗較高,散熱性能直接影響可靠性,短路、散熱通道堵塞等問題會導致局部溫度驟升,熱紅外顯微鏡能快速生成熱分布圖譜,直觀呈現熱點位置與溫度梯度,幫助工程師判斷散熱設計缺陷或電路短路點。在汽車電子等對安全性要求極高的領域,這種對熱異常的敏銳捕捉,是預防芯片失效引發(fā)安全事故的重要保障。
RTTLIT E20 微光顯微分析系統(tǒng)(EMMI)是專為半導體器件漏電缺陷檢測量身打造的高精度檢測設備,其系統(tǒng)搭載 -80℃制冷型 InGaAs 探測器與高分辨率顯微物鏡 ,構建起超高靈敏度檢測體系 —— 可準確捕捉器件在微弱漏電流下產生的極微弱微光信號,實現納米級缺陷的可視化成像。通過超高靈敏度成像技術,設備能快速定位漏電缺陷并完成深度分析,為工程師提供直觀的缺陷數據支撐,助力優(yōu)化生產工藝、提升產品可靠性。從芯片研發(fā)到量產質控,RTTLIT E20 以穩(wěn)定可靠的性能,為半導體器件全生命周期的質量保障提供科學解決方案,是半導體行業(yè)提升良率的關鍵檢測利器。在超導芯片檢測中,可捕捉超導態(tài)向正常態(tài)轉變時的異常發(fā)光,助力超導器件的性能優(yōu)化。
失效背景調查就像是為芯片失效分析開啟 “導航系統(tǒng)”,能幫助分析人員快速了解芯片的基本情況,為后續(xù)工作奠定基礎。收集芯片型號是首要任務,不同型號的芯片在結構、功能和特性上存在差異,這是開展分析的基礎信息。同時,了解芯片的應用場景也不可或缺,是用于消費電子、工業(yè)控制還是航空航天等領域,不同的應用場景對芯片的性能要求不同,失效原因也可能大相徑庭。
失效模式的收集同樣關鍵,短路、漏電、功能異常等不同的失效模式,指向的潛在問題各不相同。比如短路可能是由于內部線路故障,而漏電則可能與芯片的絕緣性能有關。失效比例的統(tǒng)計也有重要意義,如果同一批次芯片失效比例較高,可能暗示著設計缺陷或制程問題;如果只是個別芯片失效,那么應用不當的可能性相對較大。 微光顯微鏡在 LED 故障分析中作用關鍵,可檢測漏電倒裝、短路倒裝及漏電垂直 LED 芯片的異常點。實時成像微光顯微鏡運動
當二極管處于正向偏置或反向擊穿狀態(tài)時,會有強烈的光子發(fā)射,形成明顯亮點。半導體失效分析微光顯微鏡成像
對半導體研發(fā)工程師而言,排查的過程層層受阻。在逐一排除外圍電路異常、生產工藝制程損傷等潛在因素后,若仍未找到癥結,往往需要芯片原廠介入,通過剖片分析深入探究內核。
然而,受限于專業(yè)分析設備的缺乏,再加上芯片內部設計涉及機密,工程師難以深入了解其底層構造,這就導致他們在面對原廠出具的分析報告時,常常陷入 “被動接受” 的局面 —— 既無法完全驗證報告的細節(jié),也難以基于自身判斷提出更具針對性的疑問或補充分析方向。 半導體失效分析微光顯微鏡成像